[bookmark: _Hlk158389595]SUNYANI TECHNICAL UNIVERSITY
FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

[image:]
PROJECT REPORT

DESIGN AND IMPLEMENTATION OF PROJECT PORTFOLIO MANAGEMENT SYSTEM

A PROJECT REPORT PRESENTED TO THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING, SUNYANI TECHNICAL UNIVERSITY, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF HIGHER NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

BY
 ADJEI SYLVESTER BAFFOE O6220287
BIPUAH UMAR BABA 06220748
ILLIYASU MOHAMMED NASRULLAH 	 06220054

JULY

[bookmark: _GoBack]Chapter 3: Materials and Methods
3.1 Introduction
The development of the Project Portfolio Management System (PPMS) follows a structured and methodical approach to ensure the delivery of a reliable, scalable, and user-centered solution. This chapter outlines the materials, tools, methodologies, and processes employed in the design and implementation of the system. It details the software and hardware used, the system architecture, database design, development methodology, and testing procedures.
The goal is to ensure that the PPMS is developed using modern, industry-standard practices while meeting the academic and operational needs of the department. The chosen technologies—Node.js, React/Next.js, and PostgreSQL—support rapid development, real-time functionality, and long-term maintainability.

3.2 System Development Methodology
The PPMS was developed using an Agile iterative approach, specifically adapted for academic project timelines. Agile was selected due to its flexibility, emphasis on user feedback, and ability to deliver functional increments early in the development cycle [1].
3.2.1 Why Agile?
· Allows continuous feedback from stakeholders (students, supervisors).
· Supports incremental delivery: core features (login, project submission) were built first.
· Enables quick identification and correction of issues.
The development was organized into four sprints, each lasting one week:
1. Sprint 1: Requirements gathering, UI wireframing, and environment setup.
2. Sprint 2: Backend API development (Node.js + Express) and database modeling.
3. Sprint 3: Frontend implementation (Next.js) and integration with backend.
4. Sprint 4: Testing, bug fixing, and documentation.
This iterative model ensured that the system evolved based on real user needs and technical feasibility.

3.3 Functional and Non-Functional Requirements
Before development, requirements were gathered through interviews and use case analysis.
3.3.1 Functional Requirements
	
	
	

	FR1
	Role-Based Authentication
	System shall support login for students, supervisors, and admins using JWT.

	FR2
	Project Submission
	Students shall submit project title, abstract, keywords, and supervisor.

	FR3
	Searchable Project Database
	Users shall search projects by title, keyword, year, or supervisor.

	FR4
	Progress Tracking
	Supervisors shall view milestones and student progress.

	FR5
	File Upload
	Students shall upload documents (PDF, DOCX) to their project.

	FR6
	Messaging System
	Students and supervisors shall exchange messages within the app.

	FR7
	Admin Dashboard
	Administrators shall view project statistics and manage users.

	FR8
	Report Export
	System shall generate reports in PDF and CSV formats.

3.3.2 Non-Functional Requirements
	
	
	

	NFR1
	Performance
	Search results shall load within 2 seconds.

	NFR2
	Security
	Passwords shall be hashed; API shall use JWT for authentication.

	NFR3
	Usability
	Interface shall be intuitive for non-technical users.

	NFR4
	Scalability
	System shall support up to 500 users.

	NFR5
	Availability
	System shall be available 24/7 with 99% uptime.

	NFR6
	Maintainability
	Code shall be modular and well-documented.

These requirements guided the design and implementation of the system.

3.4 System Architecture
The PPMS follows a three-tier web architecture:
1. Frontend (Presentation Layer)
· Built with React and Next.js for dynamic, server-rendered pages.
· Responsive design using Tailwind CSS for mobile and desktop compatibility.
· Real-time updates via WebSocket (planned for future enhancement).
2. Backend (Application Layer)
· Developed using Node.js with Express.js as the web framework.
· RESTful API design for handling requests (e.g., /api/projects, /api/users).
· JWT (JSON Web Tokens) for secure authentication and session management.
3. Database (Data Layer)
· PostgreSQL used for structured storage of project metadata, user roles, files, and messages.
· Prisma ORM used to interact with the database, ensuring type safety and clean queries.
This architecture ensures separation of concerns, easy debugging, and independent scalability of each layer.

3.5 Software and Hardware Tools
3.5.1 Software Stack
	
	

	Node.js v18+
	Backend JavaScript runtime

	Express.js
	Web framework for API routes

	Next.js 13+
	Frontend React framework with SSR

	PostgreSQL 15
	Relational database

	Prisma
	Database ORM and schema migration

	JWT
	Secure user authentication

	Bcrypt
	Password hashing

	VS Code
	Code editor

	Postman
	API testing

	Git & GitHub
	Version control

	Docker
	Containerization for deployment

3.5.2 Hardware Requirements
	
	
	
	
	

	Development
	Intel i5
	8 GB
	256 GB SSD
	Windows/macOS/Linux

	Production
	Intel Xeon
	16 GB
	500 GB SSD
	Ubuntu Server 22.04

The system can be deployed on university servers or cloud platforms like AWS EC2 or Google Cloud.

3.6 Database Design
The database schema is based on an Entity-Relationship (ER) model with the following core entities:
3.6.1 Entities and Attributes
1. User
· id, name, email, password_hash, role (student/supervisor/admin), department, createdAt
2. Project
· id, title, abstract, keywords, studentId, supervisorId, year, status (draft, submitted, approved, completed), createdAt
3. Milestone
· id, projectId, title, dueDate, completed, notes, createdAt
4. File
· id, projectId, fileName, filePath, uploadDate
5. Message
· id, senderId, receiverId, projectId, content, read, timestamp
3.6.2 Relationships
· One User (student) → One Project
· One User (supervisor) → Many Projects
· One Project → Many Milestones, Files, Messages
This relational design ensures data integrity and supports efficient querying for search and reporting.

3.7 Development Process
The implementation followed these steps:
1. Environment Setup: Node.js, PostgreSQL, and Next.js initialized.
2. Database Modeling: Prisma schema defined and migrated.
3. Backend Development: REST API endpoints created for:
· User authentication
· Project CRUD operations
· File upload
· Messaging
4. Frontend Development: Pages built in Next.js:
· Login / Register
· Student Dashboard
· Supervisor View
· Admin Panel
5. Integration: Frontend connected to backend via API calls.
6. Testing: Unit and integration tests performed.

3.8 Testing Strategy
A multi-level testing approach was adopted to ensure system reliability.
3.8.1 Types of Testing
	
	
	

	Unit Testing
	Test individual functions (e.g., login)
	Jest, Supertest

	Integration Testing
	Verify API ↔ Database interaction
	Postman, Jest

	User Acceptance Testing (UAT)
	Validate with real users
	Feedback forms, observation

	Security Testing
	Check for vulnerabilities
	Manual review, Helmet.js

	Performance Testing
	Measure response time
	Lighthouse, Apache JMeter (planned)

3.8.2 Sample Test Cases
	
	
	

	TC01
	Valid student login
	Redirect to student dashboard

	TC02
	Invalid password
	Show "Invalid credentials" error

	TC03
	Search project by "AI"
	List all matching projects

	TC04
	Submit project proposal
	Data saved; success message shown

	TC05
	Supervisor views student project
	Milestones and files displayed

All critical bugs were resolved before final deployment.

3.9 Chapter Summary
This chapter has detailed the materials and methods used in developing the PPMS. An Agile methodology was adopted for flexibility and stakeholder engagement. The system was built using Node.js, Next.js, and PostgreSQL, following a three-tier architecture. Requirements were clearly defined, and the database was modeled to support efficient data management. A comprehensive testing strategy ensured functionality, security, and performance.
The next chapter, Chapter 4: System Design and Implementation, will present the user interface, core modules, API structure, and screenshots (to be added by you), demonstrating how the system meets the intended objectives.

References
[1] R. Pressman and B. Maxim, Software Engineering: A Practitioner's Approach, 9th ed. New York: McGraw-Hill, 2020.
[2] Node.js Foundation, Node.js Documentation, 2023. [Online]. Available: https://nodejs.org
[3] Vercel, Next.js Documentation, 2023. [Online]. Available: https://nextjs.org/docs
[4] PostgreSQL Global Development Group, PostgreSQL Documentation, 2023. [Online]. Available: https://www.postgresql.org/docs/
[5] Prisma Labs, Prisma ORM Documentation, 2023. [Online]. Available: https://www.prisma.io/docs

image1.jpeg

